Introduction to Linear Regression
Linear regression is one of the most fundamental and widely used algorithms in machine learning. In this post, we’ll explore the mathematical foundations of linear regression and implement it from scratch in Python.
Mathematical Foundation
Linear regression models the relationship between a dependent variable (y) and one or more independent variables (X) using a linear function:
\[y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon\]where:
- (\beta_0) is the y-intercept
- (\beta_i) are the coefficients for each feature
- (\epsilon) is the error term
The goal is to find the values of (\beta) that minimize the sum of squared errors:
[ \min_{\beta} \sum_{i=1}^n (y_i - \hat{y}_i)^2 ]
Implementation in Python
Here’s a simple implementation of linear regression using NumPy:
import numpy as np
class LinearRegression:
def __init__(self):
self.coefficients = None
self.intercept = None
def fit(self, X, y):
# Add bias term
X_b = np.c_[np.ones((X.shape[0], 1)), X]
# Calculate coefficients using normal equation
self.coefficients = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
self.intercept = self.coefficients[0]
self.coefficients = self.coefficients[1:]
def predict(self, X):
return np.dot(X, self.coefficients) + self.intercept
Example Usage
Try modifying the parameters below to see how they affect the linear regression:
import numpy as np from matplotlib import pyplot as plt # Generate sample data def generate_data(a=2, b=4, c=3): np.random.seed(42) X = a * np.random.rand(100, 1) y = b + c * X + np.random.randn(100, 1) return X, y class LinearRegression: def __init__(self): self.coefficients = None self.intercept = None def fit(self, X, y): # Add bias term X_b = np.c_[np.ones((X.shape[0], 1)), X] # Calculate coefficients using normal equation self.coefficients = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y) self.intercept = self.coefficients[0] self.coefficients = self.coefficients[1:] def predict(self, X): return np.dot(X, self.coefficients) + self.intercept # Create and fit the model X, y = generate_data(a=2, b=4, c=3) model = LinearRegression() model.fit(X, y) # Make predictions X_new = np.array([[0], [2]]) y_pred = model.predict(X_new) # Plot results plt.figure(figsize=(10, 6)) plt.scatter(X, y, color='blue', alpha=0.5) plt.plot(X_new, y_pred, color='red', linewidth=2) plt.xlabel('X') plt.ylabel('y') plt.title(f'Linear Regression\nIntercept: {model.intercept:.2f}, Slope: {model.coefficients[0]:.2f}') plt.grid(True) plt.show() print(f"Intercept: {model.intercept:.2f}") print(f"Coefficients: {model.coefficients[0]:.2f}")
Conclusion
Linear regression is a powerful and interpretable model that serves as a foundation for understanding more complex machine learning algorithms. In future posts, we’ll explore extensions like ridge regression, lasso regression, and polynomial regression.
Stay tuned for more content about machine learning and mathematics!